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ARTICLE

Molecular Dissection of Isolated Disease Features in Mosaic
Neurofibromatosis Type 1
Ophélia Maertens, Sofie De Schepper, Jo Vandesompele, Hilde Brems, Ine Heyns, Sandra Janssens,
Frank Speleman, Eric Legius, and Ludwine Messiaen

Elucidation of the biological framework underlying the development of neurofibromatosis type 1 (NF1)–related symptoms
has proved to be difficult. Complicating factors include the large size of the NF1 gene, the presence of several NF1
pseudogenes, the complex interactions between cell types, and the NF1-haploinsufficient state of all cells in the body.
Here, we investigate three patients with distinct NF1-associated clinical manifestations (neurofibromas only, pigmentary
changes only, and association of both symptoms). For each patient, various tissues and cell types were tested with
comprehensive and quantitative assays capable of detecting low-percentage NF1 mutations. This approach confirmed
the biallelic NF1 inactivation in Schwann cells in neurofibromas and, for the first time, demonstrated biallelic NF1
inactivation in melanocytes in NF1-related café-au-lait macules. Interestingly, both disease features arise even within a
background of predominantly NF1 wild-type cells. Together, the data provide molecular evidence that (1) the distinct
clinical picture of the patients is due to mosaicism for the NF1 mutation and (2) the mosaic phenotype reflects the
embryonic timing and, accordingly, the neural crest–derived cell type involved in the somatic NF1 mutation. The study
of the affected cell types provides important insight into developmental concepts underlying particular NF1-related
disease features and opens avenues for improved diagnosis and genetic counseling of individuals with mosaic NF1.
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Neurofibromatosis type 1 (NF1 [MIM 162200]) is a com-
mon autosomal dominant disorder caused by alterations
in the NF1 gene. The NF1-encoded protein, neurofibro-
min, functions as a negative regulator of Ras-mediated
signaling.1–3 The primary clinical features of NF1 are café-
au-lait macules (CALMs), freckling, and benign peripheral
nerve sheath tumors or neurofibromas.4 Patients with NF1
also have a predisposition to develop a wide spectrum of
other symptoms, illustrating the critical function of neu-
rofibromin in a variety of tissues and cell types. The bi-
ological context underlying the development of many
NF1-related symptoms and complications, however, re-
mains incompletely understood.

Mosaic NF1 is caused by a postzygotic NF1 lesion5–7 and
can present as mild generalized disease, segmental disease,
or gonadal mosaicism.8 Revertant mosaicism, as reported
to be caused by a postzygotic back mutation in some dis-
orders,9 has not yet been described in cases of NF1. The
mosaic phenotype most probably reflects the timing of
the somatic mutation and some of the tissues affected by
it. Since segmental NF1 is characterized by the regionally
limited distribution of NF1 disease signs, it provides the
opportunity to study cell populations differing only with
regard to the mutation(s) giving rise to mosaicism. De-
termining when and in what cell types inactivation of the
NF1 gene occurs is critical for understanding the basic
pathology of NF1-related symptoms.

In this study, we investigated one patient mildly affected
with NF1 and two patients with segmental NF1. The three
patients had different clinical manifestations—that is,
neurofibromas only, pigmentary changes only, and a com-
bination of both neurofibromas and pigmentary changes.
To elucidate the involvement of particular cell types and
mutational mechanisms in the respective phenotypes, we
investigated various tissues and cell types from every pa-
tient with mosaic NF1 with quantitative assays capable of
detecting low-percentage NF1 mutations.

Material and Methods
Patient Material

Three patients with distinct NF1-associated clinical manifesta-
tions were included in the study.

Neurofibromas only.—Patient SNF1-1 is a 46-year-old woman
who has several small (1–4 mm) cutaneous neurofibromas clus-
tered within a limited body region on her trunk and neck. At a
given time, 35–40 neurofibromas were present. Several tumors
have been removed during different sessions, and three were
available for this study. She also underwent surgery for an intes-
tinal ganglioneuroma (S100 and neurofilament positive; c-Kit
negative). Careful examination did not reveal freckling or local-
ized hyperpigmentation. Only three hyperpigmented spots small-
er than 2 cm were present. She had no Lisch nodules, no learning
disabilities, and no other signs of NF1 except for a glomus tumor
at the distal phalanx of the right middle finger. Her height is 164
cm, and there was no clinical evidence of macrocrania. Her par-
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Figure 1. Illustration of clinical subtypes of patients with mosaic NF1. A, Patient SNF1-2 presented with several CALMs (arrows) within
a pigmented background involving the entire right leg, hip, and lower back (outlined). B, Patient SNF1-3 presented with more than six
CALMs (one outlined on the left) scattered over the body and several small neurofibromas (asterisks) located on the right hand within
an overlying CALM (outlined on the right).

ents and her two sons (aged 20 and 23 years) don’t show any
NF1-related symptoms. Peripheral blood from the patient and her
sons, as well as the patient’s buccal smears, hair roots, urine,
Schwann cells, and fibroblasts cultured from three neurofibromas,
were available for analysis.

Pigmentary defects only.—Patient SNF1-2 is a 23-year-old man
presenting with several CALMs within a background of hyper-
pigmented skin involving his entire right leg, hip, and lower back
(fig. 1A). Inguinal freckling was present in the affected segment.
No hyperpigmentation or CALMs were revealed outside the de-
scribed area. Careful examination of his entire body did not reveal
any neurofibromas. Ophtalmological examination findings were
negative for Lisch nodules. His height is 182 cm, and his head
circumference is 58 cm. He has no learning disabilities; currently,
he is a high school student. He does not have children, and his
parents do not show any NF1-related symptoms. Peripheral
blood, buccal smears, hair roots, and urine sediment cells were
available for investigation, as were fibroblasts and melanocytes
cultured from normal skin, CALM, and the hyperpigmented area.

Pigmentary defects and neurofibromas.—Patient SNF1-3 is a 15-
year-old girl with more than six CALMs scattered over her body
and several small cutaneous and subcutaneous neurofibromas
located on her right hand within an overlying CALM (fig. 1B).
CALMs (11.5 cm) not occurring within regions of hyperpig-
mented skin are located on her right lower back (two), right arm
(one on the front [fig. 1B] and one on the back), left wrist (one),
left thigh (one), left ankle (one), left gluteal region (one), right
calf (one), right thigh (two), and right groin (two). Total-body
nuclear magnetic resonance imaging (MRI) revealed a putative
neurofibroma on her left shoulder. Physical examination did not
reveal skinfold freckling or any other signs of NF1. Her height is
163.5 cm, and her head circumference is 55 cm. She does not
have learning disabilities, and her parents do not show any NF1-
related symptoms. Peripheral blood, buccal smears, hair roots,

and urine sediment cells, together with Schwann cells and fibro-
blasts derived from one subcutaneous neurofibroma and fibro-
blasts and melanocytes derived from three CALMs (on her right
hand, left thigh, and right lower back) and from normal skin
(right buttock), were available for analysis. MRI of the patient’s
right hand revealed a subcutaneous nodule with a few smaller
surrounding subcutaneous satellite lesions. Histopathologically,
the lesions were determined to be neurofibromas by the absence
of mitotic activity and the mixture of elongated spindle-shaped
Schwann cells and fibroblasts in a background of wavy collage-
nous fibers. This diagnosis was confirmed by immunohistochem-
istry (S100 positivity in the majority of spindle-shaped cells).

Cell Culture

Skin biopsy.—A sample of normally pigmented and/or hyper-
pigmented skin was taken using 5-mm punch biopsy excision.
To separate the epidermal layer (with melanocytes anchored to
the basal membrane) from the underlying dermis (with fibro-
blasts), skin biopsy samples were incubated overnight at 4�C in
dispase II (Boehringer Mannheim). Primary epidermal melano-
cyte cultures from the skin biopsy samples were established as
described elsewhere.10 In brief, melanocytes were cultured in
Ham’s F10 medium (Gibco, Invitrogen) supplemented with 2.5%
fetal calf serum (FCS), 1% Ultroser, 5 ng/ml basic fibroblast growth
factor, 10 ng/ml endothelin-1, 0.33 nM cholera toxin, 0.033 mM
isobutyl-methyl-xanthine, 5.3 nM 12-O-tetradecanoyl phorbol-
13-acetate, and 20 ng/ml stem cell factor (SCF). Dermal fibroblasts
were grown in Dulbecco’s modified Eagle medium (Gibco, Invi-
trogen) supplemented with 10% FCS.

Neurofibroma.—Culture conditions for neurofibroma-derived
Schwann cells and fibroblasts were as described elsewhere.11,12 The
presence of forskolin (F�) in the Schwann cell medium promotes
proliferation of cells bearing only the first hit (NF1�/�, SC F�).
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Replacement of proliferation medium by serum-free N2 medium
and, subsequently, by proliferation medium without forskolin (F�)
promotes proliferation of cells containing both hits (NF1�/�). To
estimate the purity of Schwann cell and fibroblast cultures derived
from the neurofibroma of patient SNF1-3, immunofluorescence
staining with rabbit S100 primary antibody (Dako) was performed
as described elsewhere.13 For one SC F� culture (patient SNF1-1,
neurofibroma 3), Schwann cells were separated from contami-
nating fibroblasts by the use of p75 (nerve growth factor recep-
tor)–coupled Magnetic Cell Sorting Microbeads (Miltenyi Biotec),
which magnetically label the Schwann cell target population.
Subsequent growth of recovered cells in Schwann cell medium
resulted in a highly pure Schwann cell culture (195%, estimated
by S100 staining).

NF1 Mutation Screening

NF1 mutation analysis (GenBank reference sequence NM_000267)
was performed essentially as described elsewhere.14 In brief, ge-
nomic DNA (gDNA) was extracted from melanocyte cultures with
the QiaAmp procedure (Qiagen) and from all other cell cultures
with the Puregene procedure (Gentra). Cultures were treated with
puromycin (200 mg/ml for 4–6 h) before RNA extraction (RNeasy
kit [Qiagen]). The entire NF1 cDNA was sequenced using the
ABI3730XL genetic analyzer (Applied Biosystems). All mutations
found at the cDNA level were confirmed in gDNA by cycle se-
quencing. Multiplex ligation-dependent probe amplification
(MLPA) analysis was performed using the SALSA NF1 area kit
(MRC Holland), in accordance with the manufacturer’s instruc-
tions, to detect deletions.

Fine Mapping NF1 Deletion Breakpoints

The genomic deletions detected by MLPA analysis were evaluated
in further detail. The location of the NF1 microdeletion break-
points was determined by aspecifically amplifying and sequenc-
ing paralogous sequence variants (PSVs) in the low copy repeats
(LCRs) flanking the NF1 microdeletion region.15 By scoring the
relative intensity of both nucleotides of the PSV, the location of
the breakpoint was determined to be centromeric (higher relative
intensity of the nucleotide specific to the telomeric LCR) or telo-
meric (higher relative intensity of the nucleotide specific to the
centromeric LCR) of the PSV investigated.

Loss of Heterozygosity in NF1 Region

Loss of heterozygosity (LOH) in the NF1 gene region was eval-
uated by genotyping two microsatellite markers telomeric of (3′

NF1-3 and 3′ NF1-1)16 and four within the NF1 gene (Alu,
IVS27AC33.1, IVS38GT53.0, and IVS27TG24.8).17–20 gDNA from
paired melanocyte/Schwann cell and lymphocyte cultures from
the same patient was investigated by touchdown PCR for the
microsatellite markers (PCR program starting at 62�C, gradually
reduced [1�C/cycle] to 50�C for an additional 25 cycles) and was
subsequently analyzed on the ABI3130XL genetic analyzer (Ap-
plied Biosystems) with GeneMapper software version 3.7 (Applied
Biosystems). To determine the extent of LOH in different samples
from patient SNF1-3, additional SNPs proximal (rs6505129,
rs6505165, and rs8071580) and distal (rs9904537 and rs753750)
to the NF1 microdeletion region were evaluated as described else-
where.21 LOH for a SNP was scored when the average ratio (SNP
nucleotide:control nucleotide) of the two alleles in the tested
tissue fell outside the 95% CI of the ratios observed in control

blood DNA of the same patient and when the average ratios in
tested tissue versus control blood were at least 20% different. The
mechanism underlying LOH (deletion vs. mitotic recombination)
was evaluated by semiquantitative PCR, which took advantage
of the amplification of NF1 exon 22 (103 bp) together with the
corresponding fragment of its pseudogene located on chromo-
some 15 (107 bp), as described elsewhere.21

Cloning NF1 Point Mutations

To determine whether both NF1 mutations detected in SC F�

cultures derived from the neurofibromas of patient SNF1-1 re-
sided on different alleles, cloning experiments were performed.
For neurofibroma 1 (NF1 c.2041CrT and c.1655TrG), a fragment
containing both alterations and an additional SNP in exon 13
(rs2285892) was amplified (516 bp), cloned in the pCR2.1-TOPO
Vector (Invitrogen), and sequenced. For neurofibroma 2 (NF1
c.2041CrT and c.603_621delinsC), a fragment containing the
deletion and a SNP in exon 5 (rs1801052) was amplified (286 bp),
cloned, and sequenced. Since rs1801052 and rs2285892 are in
complete linkage disequilibrium, information on the genotype
of the SNP in exon 13 linked with the first hit (cloning experiment
neurofibroma 1) and information on the genotype of the SNP in
exon 5 linked with the second hit (cloning experiment neuro-
fibroma 2) provide information regarding whether both muta-
tions reside on the same (exon 5/exon13: A/G or G/A) or different
(exon5/exon13: A/A or G/G) haplotypes.

Quantification of NF1 Mutations

Real-time quantitative PCR.—To detect low-percentage mosaicism
for NF1 point mutations against a background of normal and
pseudogene alleles, a nested real-time quantitative PCR (qPCR)
assay was developed.22 In brief, the region spanning the NF1 point
mutation was amplified (primer sequences available on request),
and equimolar dilutions of cloned PCR fragments (wild-type and
mutant alleles) were used to generate standard curves of 5 orders
of magnitude. For actual quantification, allele-specific 3′ locked
nucleic acid primers (Eurogentec) were used. Since both somatic
NF1 point mutations appeared to be present in several NF1 pseu-
dogenes, samples were first amplified with NF1 specific primer
pairs and were diluted prior to nested real-time qPCR. Real-time
qPCR reactions were performed on an iCycler iQ instrument (Bio-
Rad). In each experiment, duplicates of a standard dilution series
of specific PCR fragments for each allele variant (wild-type and
mutant) and triplicates of 10 ng DNA of unknown samples (dif-
ferent tissues from patient with mosaic NF1 under study and non-
NF1 control sample) were amplified in a 15-ml reaction containing
1# SYBR Green I Master Mix (Eurogentec) and 250 nM of allele-
specific primers. The thermal profile consisted of 1 cycle at 95�C
for 10 min followed by 40 cycles at 95�C for 15 s and at 61�C or
63�C for 1 min. Each experiment was performed twice, and data
acquisition and automated analysis was done by the iCycler iQ
software version 3.1 (Bio-Rad). The relative number of molecules
of each allele was determined by interpolating the threshold cycle
values of the unknown samples to each standard curve, followed
by the determination of the fraction of mutant alleles (number
of mutant molecules divided by the sum of the number of wild-
type and mutant molecules).

FISH analysis.—Submicroscopic NF1 deletions were scored us-
ing dual-color FISH23 with PAC clones 22 (RP5-926B9; 5′ NF1) and
13 (RP5-1002G3; 3′ NF1).16 To investigate mosaicism, at least 400
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Table 1. Overview of NF1 Mutations Revealed by Routine
Mutation-Detection Techniques and Real-Time qPCR in
Different Tissues Derived from Segmental Patient SNF1-1,
Presenting with Neurofibromas Only, and from Two Sons

Patient
and Samplea

c.2041CrT (p.R681X)

Second HitRoutine qPCRb

SNF1-1:
Neurofibroma 1:

SC F� � 41.4%�6.4% c.1655TrG (p.L552R)
Fibroblasts � 8.4%�.5% �

Neurofibroma 2:
SC F� � 47.4%�8.6% c.603_621delinsC
Fibroblasts � 19.4%�5.5% �

Neurofibroma 3:
SC F� � 6.7%�1.0% �
Fibroblasts � � �

Blood � 3.7%�.4% �
Buccal smear � � �
Urine � � �
Hair � 1.8%�.3% �

Child 1:
Blood � � �

Child 2:
Blood � � �

NOTE.—� p Mutation detectable; � p mutation not detectable.
a SC F� p Schwann cells grown without forskolin.
b Percentage of mutant allele�SEM determined by real-time qPCR.

Table 2. Overview of NF1 Mutations Revealed by
Routine Mutation-Detection Techniques and FISH
Analysis in Different Tissues Derived from
Segmental Patient SNF1-2, Presenting with
Pigmentary Defects Only

Sample

NF1
Microdeletion

Second HitRoutine FISHa

CALM:
Melanocytes � ND c.1226_1227del
Fibroblasts � !7% �

Hyperpigmentation:
Melanocytes � ND �
Fibroblasts � !7% �

Unaffected skin:
Melanocytes � ND �
Fibroblasts � !7% �

Blood � 2% �
Buccal smear � ND �
Urine � ND �
Hair � ND �

NOTE.—� p Mutation detectable; � p mutation not
detectable.

a Percentage of 400 interphase nuclei with NF1 micro-
deletion determined by FISH analysis. ND p no data
available.

interphase nuclei were evaluated. By analysis of control samples
derived from patients not affected with NF1, the sensitivity of
the assay was estimated at 1% for lymphocytes and 7% for
fibroblasts.

Results
Neurofibromas Only (Patient SNF1-1)

NF1 mutation screening of selectively cultured Schwann
cells (SC F�) revealed an identical mutation (c.2041CrT
[p.R681X]) in two different neurofibromas. In addition,
two tumor-specific alterations (c.1655TrG [p.L552R] and
c.603_621delinsC) were detected. Cloning experiments
demonstrated that both NF1 mutations (common and tu-
mor specific) resided on different alleles. Quantification
of mutant transcripts in the presence of the wild-type form
was tested by mixing an excess (5#105 molecules) of wild-
type allele with a 5-point 10-fold dilution series of the
mutant form (5#105—50 molecules). As a control, a stan-
dard curve containing only the mutant transcript was
used. Ideally, both series should result in overlapping am-
plification plots. We observed, however, that, at low levels
of mutant transcript (!2,500 molecules), the presence of
the wild-type transcript (5#105 molecules) significantly
impaired accurate quantification of the low-abundance
mutant transcript. Therefore, the sensitivity of the quan-
titative assay is estimated at 1/200. Real-time qPCR dem-
onstrated the presence of the first hit (mutant allele per-
centage�SEM) in Epstein Barr virus–transformed white
blood cells (3.7%�.4%), hair follicles (1.8%�0.3%), fi-
broblasts derived from both neurofibromas (8.4%�0.5%

and 19.4%�5.5%), and selectively cultured Schwann cells
from a third, smaller neurofibroma (6.7%�1.0%). Find-
ings from buccal smears, urine sediment cells, and fibro-
blasts derived from the third neurofibroma were negative
or below the detection limit, as were findings from blood
from both children of the patient and the control sample
(table 1).

Pigmentary Defects Only (Patient SNF1-2)

Combined NF1 cDNA sequencing and MLPA analysis re-
vealed an NF1 microdeletion exclusively present in the mel-
anocytes derived from CALMs and the background hyper-
pigmentation area. A second alteration (c.1226_1227del)
was detected only in the melanocytes of the CALM. Fur-
ther characterization of the microdeletion revealed an
atypical deletion, with the proximal breakpoint residing
within the centromeric LCR flanking the NF1 gene and
the distal breakpoint located centromeric of the telomeric
LCR flanking the NF1 gene before JJAZ1 exon 7 (maximum
size of the deletion 1.30 Mb). FISH analysis of skin fibro-
blasts (CALM and hyperpigmented and unaffected skin)
with NF1-specific probes did not show evidence of low-
level mosaicism when the detection limit of 7% was taken
into account (table 2). FISH analysis of blood lymphocytes
revealed a slightly increased number of nuclei with evi-
dence of NF1 microdeletion (8 [2%] nuclei with one NF1
locus detected by two-color FISH in a total of 400 evalu-
ated nuclei) (table 2), as compared with the non-NF1 con-
trol lymphocyte sample (0.01; ; binomial test).P p .050
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Table 3. Overview of NF1 Mutations Revealed by Routine Mutation-
Detection Techniques and Quantitative Assays (FISH and Real-Time qPCR)
in Different Tissues Derived from Mosaic Patient SNF1-3, Presenting with
Neurofibromas and Pigmentary Defects, and from Family Members

Patient and Samplea S100b

NF1
Microdeletion c.2325�1GrA

Routine FISHc Routine qPCRd

SNF1-3:
Neurofibroma (right hand):

SC F� 195% � ND � 88.8%�8.7%
SC F� 195% � ND � 67.2%�9.5%
Fibroblasts ∼10% � ND � 12.3%�1.8%

CALM (right hand):
Melanocytes NA � ND � 97.1%�8.2%
Fibroblasts NA � !7% � 2.0%�.3%

CALM (left thigh):
Melanocytes NA � ND � 71.8%�5.5%
Fibroblasts NA � !7% � �

CALM (right lower back):
Melanocytes NA � ND � 54.9%�9.1%
Fibroblasts NA � !7% � �

Normal skin (right buttock):
Melanocytes NA � ND � �
Fibroblasts NA � !7% � �

Blood NA � 4% � �
Buccal smear NA � ND � �
Urine NA � ND � �
Hair NA � ND � ND

Mother:
Blood NA � ND � �

Father:
Blood NA � ND � �

Brother:
Blood NA � ND � �

Sister:
Blood NA � ND � �

NOTE.—� p Mutation detectable; � p mutation not detectable. ND p no data
available.

a Schwann cells (SC) grown with (F�) or without (F�) forskolin.
b Percentage of cells positive for S100 immunostaining. NA p not applicable.
c Percentage of 400 interphase nuclei with NF1 microdeletion determined by FISH

analysis.
d Percentage mutant allele�SEM determined by real-time qPCR.

Pigmentary Defects and Neurofibromas (Patient SNF1-3)

Analysis of neurofibroma-derived Schwann cells (SC F�

and SC F�) and melanocytes derived from both the CALM
on the right hand and two CALMs remote from that zone
revealed an identical NF1 mutation (c.2325�1GrA) lead-
ing to out-of-frame skipping of exon 14, as well as a de-
letion of the other NF1 allele. For all samples, the proximal
deletion breakpoint resided between rs6505129 (chro-
mosome 17 reference position 24777972 [National Center
for Biotechnology Information build 36.2]) and rs6505165
(position 25598975), whereas the distal deletion break-
point resided between the most distal PSV in the telo-
meric NF1 LCR (position 27439522) and rs9904537 (po-
sition 27579216) (minimum/maximum size of deletion
1.84 Mb/2.80 Mb). To test the influence of excess wild-
type transcript on detection of the mutant transcript
(c.2325�1GrA), a 5-point 10-fold dilution series of the

mutant form (5#105—50 molecules) was mixed with ex-
cess wild-type (5#105 molecules). Equal amounts of water
(instead of wild-type transcript) were added to a second
series of dilutions. Comparison of both amplification plots
revealed that, at low levels of mutant transcript (!1,250
molecules), the presence of the wild-type transcript sig-
nificantly impaired accurate quantification of the low-
abundance mutated transcript. Therefore, the sensitivity
of the quantitative assay is estimated at 1/400. Real-time
qPCR demonstrated the presence of the intragenic NF1
mutation (mutant allele percentage�SEM) in fibroblasts
derived from both the neurofibroma (12.3%�1.8%) and
the CALM on the right hand (2.0%�0.3%). Findings from
melanocytes and fibroblasts derived from normal skin, fi-
broblasts derived from both CALMs on the left thigh and
right lower back, peripheral blood, buccal smear, urine
sediment cells, and the control sample were negative. As
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expected, the mutation could not be detected in periph-
eral blood from the parents and siblings of the patient
(table 3). FISH analysis of skin fibroblasts (CALM and un-
affected skin) with NF1-specific probes did not show evi-
dence of low-level mosaicism when the detection limit of
7% was taken into account (table 3). FISH analysis of blood
lymphocytes revealed a significantly increased number of
nuclei with evidence of NF1 microdeletion (15/400 [4%])
(table 3) as compared with the non-NF1 control lympho-
cyte sample (0.01; ; binomial test). Immuno-P p .000017
fluorescence staining revealed S100-positive cells in the
SC F� (195%), SC F� (195%), and fibroblast (∼10%) cul-
tures derived from the neurofibroma.

Discussion

In this study, three patients with mosaic NF1 with differ-
ent clinical manifestations were investigated at the mo-
lecular level to provide insight into the cell types and mu-
tational mechanisms involved in the development of
particular NF1-related disease features.

Neurofibromas Only (Patient SNF1-1)

In selectively cultured Schwann cells (SC F�) derived from
two neurofibromas, an identical NF1 mutation, in addi-
tion to two tumor-specific alterations on the other allele,
was detected, clearly confirming the tumor-initiating
properties of Schwann cells in neurofibroma develop-
ment.11,24,25 Quantitative mutation screening of fibroblasts
derived from both neurofibromas revealed only low per-
centages of mutant (first-hit) allele (8.4%�0.5% and
19.4%�5.5%), which is undetectable by conventional
mutation-detection techniques (i.e., PCR NF1 exon 13 and
subsequent sequencing), and might reflect contamination
of the fibroblast culture with Schwann cells (see patient
SNF1-3). Similarly, Shultz et al.26 could not demonstrate
any NF1 mutation in neurofibroma-derived fibroblasts
from a patient with segmental NF1 by use of the protein
truncation test, enzymatic mutation detection, and FISH.
Remarkably, only a limited amount of mutant allele
(6.7%�1.0%) was detected in selectively cultured Schwann
cells (purity estimated at 195% by S100 staining) from a
third, smaller tumor, further illustrating the high abun-
dance of NF1�/� cells in the tumor microenvironment.
A growing body of experimental evidence supports the
idea that NF1 haploinsufficiency in the tumor environ-
ment promotes (plexiform) neurofibroma formation in
mice.27–31 Haploinsufficient mast cells, for example,
have been shown to be hypermigratory and to have in-
creased survival and proliferation potential in response to
SCF secreted by Nf1�/� Schwann cells.28,30 Whether the
abundance of NF1 wild-type cells in (dermal) neurofibro-
mas from patients with segmental NF1 reflects a slightly
different pathogenesis or, alternatively, is associated with
the small size of these patients’ tumors (heterozygous
neighboring cells may promote tumor growth more effi-

ciently than wild-type neighboring cells) remains an im-
portant and intriguing question.

Pigmentary Defects Only (Patient SNF1-2)

Combined NF1 cDNA sequencing and MLPA analysis re-
vealed an NF1 microdeletion exclusively present in mel-
anocytes derived from affected skin of patient SNF1-2
(table 2). Although a high frequency of mosaic NF1 mi-
crodeletions are caused by somatic recombination of
the JJAZ1 gene,32 the current NF1 lesion does not re-
present a typical type II deletion. A second alteration
(c.1226_1227del) was present only in melanocytes derived
from the CALM but not in the hyperpigmented back-
ground area. Previously, Eisenbarth et al.33 did not detect
somatic NF1 inactivation in melanocytes cultured from
10 CALMs of patients with classic NF1. The discrepancy
with the current data can probably be explained by dif-
ferent melanocyte culture conditions and by the fact that,
in the previous report, the cells were analyzed only for
LOH at the NF1 locus, whereas we performed a compre-
hensive NF1 mutation screening. Available evidence sug-
gests that paracrine cytokines interacting between epi-
dermal melanocytes and nonmelanocytic cells in the skin
play a central role in epidermal hyperpigmentation (re-
viewed by Imokawa34). Although the etiopathogenesis of
NF1-related pigmentary lesions remains largely unknown,
it has been postulated that the mechanism of epidermal
hyperpigmentation and mast cell infiltration in NF1
CALMs might be associated with increased secretion of
cytokines such as SCF and hepatocyte growth factor by
dermal fibroblasts.35 Along the same line, De Schepper et
al.36 reported increased levels of soluble SCF in fibroblast
supernatant from NF1 CALM but, importantly, also in NF1
normal skin compared with control individuals. In other
words, paracrine networks are at play in the NF1 skin but
are not sufficient for CALM development. Here, we dem-
onstrate that biallelic NF1 inactivation in the melanocytes
may be required for CALM formation, whereas, even in
the haploinsufficient state, the NF1 gene presumably has
an effect on general skin pigmentation. Recently, a sig-
nificant increase in melanocyte density was demonstrated
in NF1 CALM skin compared with NF1 normal skin, con-
trol normal skin, and control CALM skin.36 These NF1
CALM melanocytes also display a higher melanin content
and melanogenesis.37 In light of our current findings, it is
tempting to speculate that biallelic NF1 inactivation in
melanocytes might be the underlying molecular mecha-
nism for the distinct properties of these NF1-related pig-
mentary lesions. In a next step, it will be essential to de-
termine the dysregulating consequences of neurofibromin
loss and NF1 haploinsufficiency on signaling pathways in
melanocytes. Previous studies on segmental pigmentary
lesions revealed NF1 mutations in 9% and 18% of
fibroblasts6,7 and in 20% of keratinocytes7 cultured from
CALMs. In this study, FISH analysis of fibroblasts derived
from the hyperpigmentary and CALM skin lesions of pa-
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tient SNF1-2 was unable to show an NF1 microdeletion
(table 2). Therefore, we speculate that pigmentary lesions
can arise within an environment consisting of predomi-
nantly NF1 wild-type cells.

Interestingly, inactivation of the NF1 gene has been
demonstrated elsewhere in sporadic malignant melano-
ma cell lines38,39 and recently also in an early-disease-stage
melanoma arising in a 15-year-old patient with NF1.40 Al-
though a definite association between malignant mela-
noma and NF1 has not yet been established, these data
suggest that the NF1 gene acts as a tumor suppressor gene
in melanocytes in benign CALMs as well as in malignant
melanomas.

Pigmentary Defects and Neurofibromas (Patient SNF1-3)

In patient SNF1-3, an NF1 mutation (c.2325�1GrA) was
revealed in neurofibroma-derived Schwann cells, as well
as in melanocytes derived from both the CALM on the
right hand and two CALMs remote from that zone. More-
over, all samples showed deletion of the other NF1 allele
(1.84 Mb–2.80 Mb). Unfortunately, insufficient material
was available to further pinpoint the deletion breakpoints
by high-resolution techniques. Since melanocytes and
Schwann cells can arise from a bipotent glial-melanocyte
precursor,41 it is possible that one or both NF1 mutations
occurred in a common neural crest precursor. The clinical
observation of neurofibromas arising within an overlying
CALM might be compatible with this hypothesis. In other
words, inactivation of the wild-type NF1 allele at the het-
erozygous NF1 locus in an early developmental stage (e.g.,
neural crest precursor giving rise to bipotent glial-melan-
ocytic cells41) might be responsible for the segmental in-
volvement of epidermis (melanocyte) and several nerve
branches (Schwann cell). Alternatively, a melanocytic pre-
cursor bearing both hits might have migrated to the right
hand area and then locally reversed to glia through a neu-
ral crest–derived glial-melanocytic progenitor.41 Unex-
pectedly, the NF1 point mutation was also detected in
neurofibroma-derived fibroblasts (culture passage 2), al-
beit at a significantly lower frequency (12.3%�1.8%). Im-
munofluorescence staining demonstrated that the latter
observation most probably can be explained by the pres-
ence of S100-positive cells (Schwann cells and/or mela-
nocytes) in the fibroblast cultures. Quantitative NF1 mu-
tation screening in blood revealed a low percentage of
mosaicism for the NF1 microdeletion only (table 3). This
observation most probably implies that the NF1 micro-
deletion represents the first hit. Quantitative mutation
screening also revealed a low percentage of the first hit in
blood from patients SNF1-1 and SNF1-2 (tables 1 and 2).
Obviously, these observations raise questions about the
developmental timing of the mutational event and also
the embryological origin of the mutation-bearing cells in
the blood. Possibly, the respective first hits might have
occurred in a multipotent stem cell giving rise to neural
crest cells as well as hematopoietic cells. Alternatively,

neural crest stem cells might give rise to a small percentage
of circulating blood cells. It is well established that dif-
ferent cutaneous neurofibromas from the same patient
with NF1 bear different second hits (patient SNF1-1 and
patients described elsewhere13). Moreover, these neurofi-
bromas usually become apparent only during the 2nd de-
cade of life.4 Strikingly, both NF1 inactivating events are
the same in the melanocytes derived from the CALMs on
the right hand, the left thigh, and the right lower back.
This finding is particularly intriguing, given the typical
congenital appearance of many NF1 CALM lesions. It re-
mains to be further explored whether the early presen-
tation of pigmentary NF1 signs could be attributed to bial-
lelic NF1 inactivation in melanocytic precursors (mela-
noblasts) during embryonic development. Melanoblasts
migrate in mice from the neural crest dorsolaterally and
enter the skin where they proliferate clonally and finally
differentiate into mature skin melanocytes.42,43 One might
assume that neurofibromin loss in melanoblasts will result
in enhanced proliferation and, hence, increased mela-
nocyte density36 in NF1-related CALM lesions. It will be
essential to molecularly dissect more CALM lesions de-
rived from different areas of the body and to determine
the (presumably different) second hit in NF1 clinical fea-
tures arising only later in life.

The molecular data obtained from all patients with mo-
saic NF1 described in this article undeniably indicate that
the percentage of the NF1 mutation in non–neural crest–
derived cells is often so low that it would be missed by
routine NF1 screening. This implies that an accurate di-
agnosis for mosaic NF1 can be established only by com-
prehensive screening of those cells responsible for the phe-
notypic NF1-related features—that is, Schwann cells in
neurofibromas and/or melanocytes in pigmentary lesions.
Additionally, screening the relevant cell type in the patient
with mosaic NF1 can provide a molecular marker useful
in the prenatal and presymptomatic diagnostic setting.
This new insight will incontestably facilitate the diagnosis
and counseling of individuals with mosaic NF1. Moreover,
the molecular approaches described in this article might
prove beneficial in those 5% of patients fulfilling the NF1
National Institutes of Health clinical criteria but in whom
no constitutional NF1 mutation can be revealed in blood
(e.g., patient SNF1-3). Also, for this particular patient
group, comprehensive screening of NF1 phenotype–re-
lated cell types will facilitate clinical diagnosis and further
genetic follow-up.

In conclusion, we provide—for the first time, to our
knowledge—molecular evidence that different NF1 mo-
saic phenotypes result from a postzygotic NF1 mutation
in neural crest–derived cell types. Whereas NF1 deficiency
in Schwann cells is essential for neurofibroma develop-
ment, biallelic NF1 inactivation in melanocytes seems to
trigger NF1-related CALM development. In our opinion,
the clinical mosaic phenotype points to cell types that are
irrefutably affected by the somatic NF1 mutation. These
findings provide important insight into the developmen-
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tal concepts underlying NF1-related disease features and
open avenues for improved diagnosis and genetic coun-
seling for individuals with mosaic NF1.
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